Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Biochemistry (Mosc) ; 89(3): 407-416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648761

RESUMO

The synthesis of (p)ppGpp alarmones plays a vital role in the regulation of metabolism suppression, growth rate control, virulence, bacterial persistence, and biofilm formation. The (p)ppGpp alarmones are synthesized by proteins of the RelA/SpoT homolog (RSH) superfamily, including long bifunctional RSH proteins and small alarmone synthetases. Here, we investigated enzyme kinetics and dose-dependent enzyme inhibition to elucidate the mechanism of 4-(4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoic acid (DMNP) action on the (p)ppGpp synthetases RelMsm and RelZ from Mycolicibacterium smegmatis and RelMtb from Mycobacterium tuberculosis. DMNP was found to inhibit the activity of RelMtb. According to the enzyme kinetics analysis, DMNP acts as a noncompetitive inhibitor of RelMsm and RelZ. Based on the results of molecular docking, the DMNP-binding site is located in the proximity of the synthetase domain active site. This study might help in the development of alarmone synthetase inhibitors, which includes relacin and its derivatives, as well as DMNP - a synthetic analog of the marine coral metabolite erogorgiaene. Unlike conventional antibiotics, alarmone synthetase inhibitors target metabolic pathways linked to the bacterial stringent response. Although these pathways are not essential for bacteria, they regulate the development of adaptation mechanisms. Combining conventional antibiotics that target actively growing cells with compounds that impede bacterial adaptation may address challenges associated with antimicrobial resistance and bacterial persistence.

2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473832

RESUMO

Resistance evolution during exposure to non-lethal levels of antibiotics is influenced by various stress responses of bacteria which are known to affect growth rate. Here, we aim to disentangle how the interplay between resistance development and associated fitness costs is affected by stress responses. We performed de novo resistance evolution of wild-type strains and single-gene knockout strains in stress response pathways using four different antibiotics. Throughout resistance development, the increase in minimum inhibitory concentration (MIC) is accompanied by a gradual decrease in growth rate, most pronounced in amoxicillin or kanamycin. By measuring biomass yield on glucose and whole-genome sequences at intermediate and final time points, we identified two patterns of how the stress responses affect the correlation between MIC and growth rate. First, single-gene knockout E. coli strains associated with reactive oxygen species (ROS) acquire resistance faster, and mutations related to antibiotic permeability and pumping out occur earlier. This increases the metabolic burden of resistant bacteria. Second, the ΔrelA knockout strain, which has reduced (p)ppGpp synthesis, is restricted in its stringent response, leading to diminished growth rates. The ROS-related mutagenesis and the stringent response increase metabolic burdens during resistance development, causing lower growth rates and higher fitness costs.


Assuntos
Antibacterianos , Escherichia coli , Escherichia coli/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Estresse Oxidativo
3.
Vavilovskii Zhurnal Genet Selektsii ; 28(1): 15-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465243

RESUMO

Bacterial stress adaptive response is formed due to changes in the cell gene expression profile in response to alterations in environmental conditions through the functioning of regulatory networks. The mutual influence of network signaling molecules represented by cells' natural metabolites, including indole and second messengers (p) ppGpp and cAMP, is hitherto not well understood, being the aim of this study. E. coli parent strain BW25141 ((p) ppGpp+) and deletion knockout BW25141ΔrelAΔspoT which is unable to synthesize (p)ppGpp ((p)ppGpp0) were cultivated in M9 medium supplemented with different glucose concentrations (5.6 and 22.2 mM) in the presence of tryptophan as a substrate for indole synthesis and in its absence. The glucose content was determined with the glucose oxidase method; the indole content, by means of HPLC; and the cAMP concentration, by ELISA. The onset of an increase in initially low intracellular cAMP content coincided with the depletion of glucose in the medium. Maximum cAMP accumulation in the cells was proportional to the concentration of initially added glucose. At the same time, the (p) ppGpp0 mutant showed a decrease in maximum cAMP levels compared to the (p)ppGpp+ parent, which was the most pronounced in the medium with 22.2 mM glucose. So, (p)ppGpp was able to positively regulate cAMP formation. The promoter of the tryptophanase operon responsible for indole biosynthesis is known to be under the positive control of catabolic repression. Therefore, in the cells of the (p)ppGpp+ strain grown in the tryptophan-free medium that were characterized by a low rate of spontaneous indole formation, its synthesis significantly increased in response to the rising cAMP level just after glucose depletion. However, this was not observed in the (p)ppGpp0 mutant cells with reduced cAMP accumulation. When tryptophan was added to the medium, both of these strains demonstrated high indole production, which was accompanied by a decrease in cAMP accumulation compared to the tryptophan-free control. Thus, under glucose depletion, (p)ppGpp can positively regulate the accumulation of both cAMP and indole, while the latter, in its turn, has a negative effect on cAMP formation.

4.
Infect Immun ; 92(1): e0033423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099658

RESUMO

Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.


Assuntos
Proteínas de Bactérias , Guanosina Pentafosfato , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Guanosina Pentafosfato/metabolismo , Shigella flexneri , Células Cultivadas
5.
mBio ; : e0190723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971266

RESUMO

IMPORTANCE: Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.

6.
J Biol Chem ; 299(12): 105429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926282

RESUMO

Virtually all bacterial species synthesize (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the so-called stringent response, which controls many aspects of cellular physiology and metabolism. In Escherichia coli, (p)ppGpp levels are controlled by two homologous enzymes: the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified several protein candidates that can modulate (p)ppGpp levels in E. coli. In this work, we show that the putative two-component system connector protein YmgB can promote SpoT-dependent accumulation of ppGpp in E. coli. Importantly, we determined that the control of SpoT activities by YmgB is independent of its proposed role in the two-component Rcs system, and these two functions can be uncoupled. Using genetic and structure-function analysis, we show that the regulation of SpoT activities by YmgB occurs by functional and direct binding in vivo and in vitro to the TGS and Helical domains of SpoT. These results further support the role of these domains in controlling the reciprocal enzymatic states.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Guanosina Pentafosfato/genética , Bactérias/metabolismo , Guanosina Tetrafosfato , Hidrolases/metabolismo , Ligases/genética , Ligases/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
7.
Microb Pathog ; 183: 106310, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604214

RESUMO

Brucella abortus is facultative intracellular pathogen that causes chronic persistent infections and results in abortion and infertility in food animals. Recurrent infections can be one of the results of persister cells formation that transiently displays phenotypic tolerance to high dose of antibiotics treatment. We examined persister cells formation of B. abortus strain A19 in stationary phase and investigated a potential role for the (p)ppGpp synthetase Rsh in this process. We found that B. abortus stationary phase cells can produce higher levels of multi-drugs tolerant persister cells in vitro under high dose of antibiotics (20 × MIC) exposure than do exponential phase cells. Persister cell formation was also induced with environmental stressors pH 4.5, 0.01 M PBS (pH7.0), 2% NaCl and 25 °C, upon exposure to ampicillin, enrofloxacin and rifampicin. Persister cells were not formed following exposure to 1 mM H2O2. The numbers of persister cells were significantly increased following uptake of B. abortus stationary phase cells by RAW264.7 macrophages in contrast with cultures in TSB liquid medium. Environmental stressors to B. abortus significantly increased expression of rsh mRNA level. The rsh null mutant (Δrsh) formed significantly fewer persister cells than the complemented (CΔrsh) and wildtype (WT) strains under high dose of rifampicin in vitro. These data for the first time demonstrate that B. abortus can produce multi-drug tolerant persister cells in stationary phase. The (p)ppGpp synthetase Rsh is necessary for persister cell formation in B. abortus in the presence of rifampicin. On this basis, a new understanding of the recurrent infections of Brucella was advanced, thus provided a new basis for revelation of pathogenic mechanism of the chronic persistent infection in Brucella.


Assuntos
Brucella abortus , Rifampina , Feminino , Gravidez , Animais , Brucella abortus/genética , Rifampina/farmacologia , Peróxido de Hidrogênio , Reinfecção , Antibacterianos/farmacologia
8.
Microb Cell ; 10(7): 141-144, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395996

RESUMO

The bacterial stringent response and its effector alarmone guanosine penta- or tetra - phosphates (p)ppGpp are vital for bacterial tolerance and survival of various stresses in environments (including antibiotics) and host cells (virulence). (p)ppGpp does so by binding to its numerous target proteins and reprograming bacterial transcriptome to tune down the synthesis of nucleotides and rRNA/tRNA, and up-regulate amino acid biosynthesis genes. Recent identification of more novel (p)ppGpp direct binding proteins in Escherichia coli and their deep studies have unveiled unprecedented details of how (p)ppGpp coordinates the nucleotide and amino acid metabolic pathways upon stringent response; however, the mechanistic link between nucleotide and amino acid metabolisms remains still incompletely understood. Here we propose the metabolite ribose 5'-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.

9.
Microbiol Spectr ; 11(4): e0182623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367300

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are widely recognized as bacterial adaptive immune systems against invading viruses and bacteriophages. The oral pathogen Streptococcus mutans encodes two CRISPR-Cas loci (CRISPR1-Cas and CRISPR2-Cas), and their expression under environmental conditions is still under investigation. In this study, we investigated the transcriptional regulation of cas operons by CcpA and CodY, two global regulators that contribute to carbohydrate and (p)ppGpp metabolism. The possible promoter regions for cas operons and the binding sites for CcpA and CodY in the promoter regions of both CRISPR-Cas loci were predicted using computational algorithms. We found that CcpA could directly bind to the upstream region of both cas operons, and detected an allosteric interaction of CodY within the same region. The binding sequences of the two regulators were identified through footprinting analysis. Our results showed that the promoter activity of CRISPR1-Cas was enhanced under fructose-rich conditions, while deletion of the ccpA gene led to reduced activity of the CRISPR2-Cas promoter under the same conditions. Additionally, deletion of the CRISPR systems resulted in a significant decrease in fructose uptake ability compared to the parental strain. Interestingly, the accumulation of guanosine tetraphosphate (ppGpp) was reduced in the presence of mupirocin, which induces a stringent response, in the CRISPR1-Cas-deleted (ΔCR1cas) and both CRISPR-Cas-deleted (ΔCRDcas) mutant strains. Furthermore, the promoter activity of both CRISPRs was enhanced in response to oxidative or membrane stress, while the CRISPR1 promoter activity was reduced under low-pH conditions. Collectively, our findings demonstrate that the transcription of the CRISPR-Cas system is directly regulated by the binding of CcpA and CodY. These regulatory actions play a crucial role in modulating glycolytic processes and exerting effective CRISPR-mediated immunity in response to nutrient availability and environmental cues. IMPORTANCE An effective immune system has evolved not only in eukaryotic organisms but also in microorganisms, enabling them to rapidly detect and neutralize foreign invaders in the environment. Specifically, the CRISPR-Cas system in bacterial cells is established through a complex and sophisticated regulatory mechanism involving specific factors. In this study, we demonstrate that the expression of two CRISPR systems in S. mutans can be controlled by two global regulators, CcpA and CodY, which play critical roles in carbohydrate metabolism and amino acid biosynthesis. Importantly, our results show that the expression of the CRISPR-Cas system in S. mutans influences (p)ppGpp production during the stringent response, which is a gene expression regulatory response that aids in environmental stress adaptation. This transcriptional regulation by these regulators enables a CRISPR-mediated immune response in a host environment with limited availability of carbon sources or amino acids, while ensuring efficient carbon flux and energy expenditure to support multiple metabolic processes.


Assuntos
Sistemas CRISPR-Cas , Streptococcus mutans , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Guanosina Pentafosfato/metabolismo , Regiões Promotoras Genéticas , Frutose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Microlife ; 4: uqad017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251512

RESUMO

The alarmones and second messengers (p)ppGpp are important for the cellular response to amino acid starvation. Although the stringent response is present in many bacteria, the targets and functions of (p)ppGpp can differ between species, and our knowledge of (p)ppGpp targets is constantly expanding. Recently, it was demonstrated that these alarmones are also part of the heat shock response in Bacillus subtilis and that there is a functional overlap with the oxidative and heat stress transcriptional regulator Spx. Here, the (p)ppGpp second messenger alarmones allow the fast stress-induced downregulation of translation while Spx inhibits the further expression of translation-related genes to lower the load on the protein quality control system, while the chaperone and protease expression is induced. In this review, we discuss the role of (p)ppGpp and its intricate connections in the complex network of stress sensing, heat shock response, and adaptation in B. subtilis cells.

11.
Microlife ; 4: uqad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223729

RESUMO

The stringent response and its signalling nucleotides, pppGpp and ppGpp, have been the subject of intense research since the discovery of (p)ppGpp in 1969. Recent studies have revealed that the downstream events that follow (p)ppGpp accumulation vary among species. Consequently, the stringent response as initially characterized in Escherichia coli largely differs from the response in Firmicutes (Bacillota), wherein synthesis and degradation of the messengers (p)ppGpp are orchestrated by the bifunctional Rel enzyme with synthetase and hydrolase activity and the two synthetases SasA/RelP and SasB/RelQ. Here we will summarize recent studies supporting the role of (p)ppGpp in the development of antibiotic resistance and tolerance as well as survival under adverse environmental conditions in Firmicutes. We will also discuss the impact of elevated (p)ppGpp levels on the development of persister cells and the establishment of persistent infections. (p)ppGpp levels are usually tightly controlled to allow optimal growth under non-stressed conditions. Upon the onset of certain 'stringent conditions' the sudden increase in (p)ppGpp levels limits growth while exerting protective effects. In Firmicutes, the (p)ppGpp-mediated restriction of GTP accumulation is one major mechanism of protection and survival under stresses such as antibiotic exposure.

12.
Front Microbiol ; 14: 1141775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007489

RESUMO

The cyanobacterial protein PipY belongs to the Pyridoxal-phosphate (PLP)-binding proteins (PLPBP/COG0325) family of pyridoxal-phosphate-binding proteins, which are represented in all three domains of life. These proteins share a high degree of sequence conservation, appear to have purely regulatory functions, and are involved in the homeostasis of vitamin B6 vitamers and amino/keto acids. Intriguingly, the genomic context of the pipY gene in cyanobacteria connects PipY with PipX, a protein involved in signaling the intracellular energy status and carbon-to-nitrogen balance. PipX regulates its cellular targets via protein-protein interactions. These targets include the PII signaling protein, the ribosome assembly GTPase EngA, and the transcriptional regulators NtcA and PlmA. PipX is thus involved in the transmission of multiple signals that are relevant for metabolic homeostasis and stress responses in cyanobacteria, but the exact function of PipY is still elusive. Preliminary data indicated that PipY might also be involved in signaling pathways related to the stringent stress response, a pathway that can be induced in the unicellular cyanobacterium Synechococcus elongatus PCC7942 by overexpression of the (p)ppGpp synthase, RelQ. To get insights into the cellular functions of PipY, we performed a comparative study of PipX, PipY, or RelQ overexpression in S. elongatus PCC7942. Overexpression of PipY or RelQ caused similar phenotypic responses, such as growth arrest, loss of photosynthetic activity and viability, increased cell size, and accumulation of large polyphosphate granules. In contrast, PipX overexpression decreased cell length, indicating that PipX and PipY play antagonistic roles on cell elongation or cell division. Since ppGpp levels were not induced by overexpression of PipY or PipX, it is apparent that the production of polyphosphate in cyanobacteria does not require induction of the stringent response.

13.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108773

RESUMO

The stringent response is a rapid response system that is ubiquitous in bacteria, allowing them to sense changes in the external environment and undergo extensive physiological transformations. However, the regulators (p)ppGpp and DksA have extensive and complex regulatory patterns. Our previous studies demonstrated that (p)ppGpp and DksA in Yersinia enterocolitica positively co-regulated motility, antibiotic resistance, and environmental tolerance but had opposite roles in biofilm formation. To reveal the cellular functions regulated by (p)ppGpp and DksA comprehensively, the gene expression profiles of wild-type, ΔrelA, ΔrelAΔspoT, and ΔdksAΔrelAΔspoT strains were compared using RNA-Seq. Results showed that (p)ppGpp and DksA repressed the expression of ribosomal synthesis genes and enhanced the expression of genes involved in intracellular energy and material metabolism, amino acid transport and synthesis, flagella formation, and the phosphate transfer system. Additionally, (p)ppGpp and DksA inhibited amino acid utilization (such as arginine and cystine) and chemotaxis in Y. enterocolitica. Overall, the results of this study unraveled the link between (p)ppGpp and DksA in the metabolic networks, amino acid utilization, and chemotaxis in Y. enterocolitica and enhanced the understanding of stringent responses in Enterobacteriaceae.


Assuntos
Proteínas de Escherichia coli , Yersinia enterocolitica , Guanosina Pentafosfato/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Transcriptoma , Quimiotaxia/genética , Aminoácidos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
Infect Immun ; 91(4): e0043222, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920208

RESUMO

It has recently become evident that the bacterial stringent response is regulated by a triphosphate alarmone (pGpp) as well as the canonical tetra- and pentaphosphate alarmones ppGpp and pppGpp [together, (p)ppGpp]. Often dismissed in the past as an artifact or degradation product, pGpp has been confirmed as a deliberate endpoint of multiple synthetic pathways utilizing GMP, (p)ppGpp, or GDP/GTP as precursors. Some early studies concluded that pGpp functionally mimics (p)ppGpp and that its biological role is to make alarmone metabolism less dependent on the guanine energy charge of the cell by allowing GMP-dependent synthesis to continue when GDP/GTP has been depleted. However, recent reports that pGpp binds unique potential protein receptors and is the only alarmone synthesized by the intestinal pathogen Clostridioides difficile indicate that pGpp is more than a stand-in for the longer alarmones and plays a distinct biological role beyond its functional overlap (p)ppGpp.


Assuntos
Guanosina Pentafosfato , Nucleotídeos , Guanosina Pentafosfato/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo
15.
BMC Microbiol ; 23(1): 61, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882692

RESUMO

Glyphosate is a herbicide widely used in food production that blocks the synthesis of aromatic amino acids in plants and in microorganisms and also induces the accumulation of the alarmone (p)ppGpp. The purpose of this study was to investigate whether glyphosate affects the resistance, tolerance or persistence of bacteria towards three different classes of antibiotics and the possible role of (p)ppGpp in this activity. Glyphosate did not affect the minimum inhibitory concentration of the tested antibiotics, but enhanced bacterial tolerance and/or persistence towards them. The upshift in ciprofloxacin and kanamycin tolerance was partially dependent on the presence of relA that promotes (p)ppGpp accumulation in response to glyphosate. Conversely, the strong increase in ampicillin tolerance caused by glyphosate was independent of relA. We conclude that by inducing aromatic amino acid starvation glyphosate contributes to the temporary increase in E. coli tolerance or persistence, but does not affect antibiotic resistance.


Assuntos
Escherichia coli , Guanosina Pentafosfato , Escherichia coli/genética , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
16.
Microbiol Spectr ; : e0044723, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877013

RESUMO

Staphylococcus aureus is an opportunistic bacterial pathogen that often results in difficult-to-treat infections. One mechanism used by S. aureus to enhance survival during infection is the stringent response. This is a stress survival pathway that utilizes the nucleotides (p)ppGpp to reallocate bacterial resources, shutting down growth until conditions improve. Small colony variants (SCVs) of S. aureus are frequently associated with chronic infections, and this phenotype has previously been linked to a hyperactive stringent response. Here, we examine the role of (p)ppGpp in the long-term survival of S. aureus under nutrient-restricted conditions. When starved, a (p)ppGpp-null S. aureus mutant strain ((p)ppGpp0) initially had decreased viability. However, after 3 days we observed the presence and dominance of a population of small colonies. Similar to SCVs, these small colony isolates (p0-SCIs) had reduced growth but remained hemolytic and sensitive to gentamicin, phenotypes that have been tied to SCVs previously. Genomic analysis of the p0-SCIs revealed mutations arising within gmk, encoding an enzyme in the GTP synthesis pathway. We show that a (p)ppGpp0 strain has elevated levels of GTP, and that the mutations in the p0-SCIs all lower Gmk enzyme activity and consequently cellular GTP levels. We further show that in the absence of (p)ppGpp, cell viability can be rescued using the GuaA inhibitor decoyinine, which artificially lowers the intracellular GTP concentration. Our study highlights the role of (p)ppGpp in GTP homeostasis and underscores the importance of nucleotide signaling for long-term survival of S. aureus in nutrient-limiting conditions, such as those encountered during infections. IMPORTANCE Staphylococcus aureus is a human pathogen that upon invasion of a host encounters stresses, such as nutritional restriction. The bacteria respond by switching on a signaling cascade controlled by the nucleotides (p)ppGpp. These nucleotides function to shut down bacterial growth until conditions improve. Therefore, (p)ppGpp are important for bacterial survival and have been implicated in promoting chronic infections. Here, we investigate the importance of (p)ppGpp for long-term survival of bacteria in nutrient-limiting conditions similar to those in a human host. We discovered that in the absence of (p)ppGpp, bacterial viability decreases due to dysregulation of GTP homeostasis. However, the (p)ppGpp-null bacteria were able to compensate by introducing mutations in the GTP synthesis pathway that led to a reduction in GTP build-up and a rescue of viability. This study therefore highlights the importance of (p)ppGpp for the regulation of GTP levels and for long-term survival of S. aureus in restricted environments.

17.
Microbiol Spectr ; : e0513422, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36840557

RESUMO

The impact of translation on mRNA stability can be varied, ranging from a protective effect of ribosomes that shield mRNA from RNases to preferentially exposing sites of RNase cleavage. These effects can change depending on whether ribosomes are actively moving along the mRNA or stalled at particular sequences or structures or awaiting charged tRNAs. We recently observed that depleting Bacillus subtilis cells of their tRNA maturation enzymes RNase P and RNase Z led to altered mRNA levels of a number of assembly factors involved in the biogenesis of the 30S ribosomal subunit. Here, we extended this study to other assembly factor and non-assembly factor mRNAs in B. subtilis. We additionally identified multiple transcriptional and translational layers of regulation of the rimM operon mRNA that occur in response to the depletion of functional tRNAs. IMPORTANCE The passage of ribosomes across individual mRNAs during translation can have different effects on their degradation, ranging from a protective effect by shielding from ribonucleases to, in some cases, making the mRNA more vulnerable to RNase action. We recently showed that some mRNAs coding for proteins involved in ribosome assembly were highly sensitive to the availability of functional tRNA. Using strains depleted of the major tRNA processing enzymes RNase P and RNase Z, we expanded this observation to a wider set of mRNAs, including some unrelated to ribosome biogenesis. We characterized the impact of tRNA maturase depletion on the rimM operon mRNA and show that it is highly complex, with multiple levels of transcriptional and posttranscriptional effects coming into play.

18.
Cell Rep ; 42(3): 112140, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842086

RESUMO

Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bactérias/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Transporte Proteico , Ribossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
19.
mBio ; 14(1): e0340422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625599

RESUMO

As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.


Assuntos
Guanosina Pentafosfato , RNA de Transferência , Guanosina Pentafosfato/metabolismo , RNA de Transferência/genética , Ribossomos/metabolismo , Aminoácidos/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Guanosina Tetrafosfato/metabolismo
20.
Semin Cell Dev Biol ; 136: 3-12, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35331628

RESUMO

Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.


Assuntos
Guanosina Pentafosfato , Guanosina Tetrafosfato , Guanosina Tetrafosfato/metabolismo , Guanosina Pentafosfato/metabolismo , Proteínas de Bactérias/metabolismo , Ribossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...